Comparing Walk-In, Open Access, and Traditional Appointment Scheduling in Outpatient Health Care Clinics

Production and Operations Management Society
Orlando – May 2009

Dr. Linda R. LaGanga
Director of Quality Systems
Mental Health Center of Denver
Denver, CO USA

Prof. Stephen R. Lawrence
Leeds School of Business
University of Colorado
Boulder, CO USA
Agenda

1. Problem Setting
2. Open Access and Walk-in Models
3. Computational Results
4. Managerial Implications
5. Future Research and Conclusions
Objectives of Research

- **Optimize patient flow in health-care clinics**
 - Traditionally scheduled (TS) clinic
 - Some patients do not “show” for scheduled appointments
 - TS clinic wishes to increase scheduling flexibility
 - Some capacity allocated to “open access” (OA) appointments, OR
 - Some capacity allocated to “walk-in” traffic
 - Balance needs of clinic, providers, and patients

- **Study impact of open access and walk-in traffic**
 - When is open access or walk-in traffic beneficial?
 - What mix of TS, OA, and WI traffic is best?
 - What are trade-offs of TS, OA, and WI on clinic performance?
2. Appointment Scheduling Model

![Bar Chart]

- Number Waiting (k):
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12

- Probability:
 - 0%
 - 5%
 - 10%
 - 15%
 - 20%
Assumptions

- A clinic session has N treatment slots
 - Each slot is d time units long (deterministic)
 - A clinic session then is $D=Nd$ time units in duration
- One or multiple undifferentiated providers P
 - Clients serviced by any available provider
- Patients can arrive in one of three ways
 - Binomial traditional appointments “show” with probability σ
 - Poisson open access call-ins with mean φ (per day)
 - Poisson walk-ins with mean λ (per appointment slot)
 - Arrivals have equal service priority (undifferentiated)
Characteristics of Model

- **Model flexibility**
 - Appt show rates σ_j can vary by treatment slot j (time of day)
 - Open access call-in rate φ can vary by day.
 - Walk-in rate λ_j can vary by treatment slot j
 - Number of providers P_j can vary by slot j
 - Any arrival distribution can be accommodated

- **Patient arrivals**
 - Patients are only seen at the start of a treatment slot (early arrivals wait for next slot without cost)
 - Patients are seen in order of arrival (FCFS)
Arrival of Scheduled Appointments

- Appointment arrivals are binomially distributed:
 - s_j patients scheduled for treatment slot j
 - Probability of a patient showing is s
 - $a_j \leq s_j$ actually arrive in slot j

$$b(a_j; s_j, \sigma) = \binom{s_j}{a_j} \sigma^{a_j} (1-\sigma)^{s_j-a_j}$$

Binomial distribution has no right tail

$s_j = 4, \; \sigma = 70\%$
Arrival of Walk-In Patients

- Walk-ins arrive at some percentage of clinic capacity
- Walk-in arrivals are Poisson distributed
 - Walk-ins arrive at rate λ per slot
 - w_j actually walk-in in slot j

$$p(w_j; \lambda) = \frac{\lambda^k e^{-\lambda}}{w_j!}$$

Poisson distribution has a long right tail

$\lambda = 1$
Open access (OA) calls arrive at a mean rate equal to some fraction of clinic capacity (e.g., 50%).

Patients call for a same-day appointment:
- Number of OA patients calling on a particular day is Poisson distributed with mean ϕ.
- “Turned away” if no open slots remain that day:
 - Perhaps make an appointment on another day.
 - OA patients always show for appointments.
Probability of \(k \) Clients Waiting

Probability of new arrivals in slot \(j \)

Probability of \(k \) waiting at start of slot \(j \)

\[
\theta_{j+1,k} = \theta_{j,0} \alpha_{j+1,k} + \sum_{i=0}^{k} \theta_{j,i+1} \alpha_{j+1,k-i}
\]

- \(\alpha_{jk} \) = probability of \(k \) clients arriving for service at the start of appointment slot \(j \)
- \(\theta_{jk} \) = probability of \(k \) clients waiting for service at start of appointment slot \(j \)

Binomial TS appointment arrivals

New WI or OA arrivals

Waiting plus \(k \) arrivals = \(k \)
Relative Benefits and Penalties

- $\pi = \text{Benefit of seeing additional client}$
- $\omega = \text{Penalty for client waiting}$
- $\tau = \text{Penalty for clinic overtime}$
- Numéraire of π, ω, and τ doesn’t matter
 - Ratios (relative importance) are important
- Allow linear, quadratic, and mixed (linear + quadratic) costs

Ratios (relative importance) are important
Linear & Quadratic Objectives

- **Linear Utility Function**

\[
\hat{U}(S) = \pi \hat{A} - \frac{\omega}{\hat{A}} \left(\sum_{j=1}^{N} \sum_{k} (2k-1) \theta_{jk} + \sum_{k} \sum_{i=1}^{k} (i-1)^2 \theta_{N+1,k} \right) - \tau \sum_{k} k^2 \theta_{N+1,k}
\]

- **Quadratic Utility Function**

 - Benefit from patients served
 - Patient waiting penalties during normal clinic ops
 - Patient waiting penalties during clinic overtime
 - Clinic overtime penalties
Heuristic Solution Methodology

1. Gradient search
 - Increment/decrement appts scheduled in each slot
 - Choose the single change with greatest utility
 - Iterate until no further improvement found

2. Pairwise interchange
 - Exchange appts scheduled in all slot pairs
 - Choose the single swap with greatest utility
 - Iterate until no further improvement found

3. Iterate (1) and (2) while utility improves

4. Prior research: Optimality not guaranteed, but almost always obtained
3. Computational Results
Computational Trials

- 44 sample problems solved
- Session size \(N = 12 \)
- Appointment show rate \(\sigma = 70\% \)
- Number of providers \(P = \{1, 2, 4, 8\} \)
- OA call-in rate \(\lambda = \{0\%, 10\%, \ldots, 100\%\} \) capacity
 - With \(P = 4 \) and \(N = 12 \), then \(\phi = 24 \) is 50\% of capacity
- Walk-in rate \(\lambda = \{0\%, 10\%, \ldots, 100\%\} \) of capacity
 - With \(P = 4 \), then \(\lambda = 2 \) is 50\% of capacity
- Quadratic costs
 - Parameters \(\pi = 1.0, \omega = 1.0, \tau = 1.5 \)
50% Walk-Ins ($\lambda = 0.5$)

$N=12$, $P=1$, $\sigma=0.7$, $\pi=1.0$, $\omega=1.0$, $\tau=1.5$ (quadratic)
Patients Seen

N=12, P=1, σ =0.7, π =1.0, α =1.0, ω =1.0, τ =1.5
Patient Waiting Time

$N=12$, $P=1$, $\sigma=0.7$, $\pi=1.0$, $\alpha=1.0$, $\omega=1.0$, $\tau=1.5$
Clinic Overtime

$N=12, \ P=1, \ \sigma = 0.7, \ \pi = 1.0, \ \alpha = 1.0, \ \omega = 1.0, \ \tau = 1.5$
Provider Utilization

$N=12, \ P=1, \ \sigma =0.7, \ \pi =1.0, \ \alpha =1.0, \ \omega =1.0, \ \tau =1.5$
Net Utility

$N=12$, $P=1$, $\sigma = 0.7$, $\pi = 1.0$, $\alpha = 1.0$, $\omega = 1.0$, $\tau = 1.5$
% of Best Utility

$N = 12, \ P = 1, \ \sigma = 0.7, \ \pi = 1.0, \ \alpha = 1.0, \ \omega = 1.0, \ \tau = 1.5$
4. Managerial Implications
Managerial Implications

- TS appointments provide better clinic utility than does WI traffic or OA call-ins
 - Any WI or OA traffic causes some decline in utility
- An all-WI or all-OA clinic performs worse than any clinic with some TS appointments
 - Even a relatively small percentage of scheduled appointments can significantly improve clinic utility
 - Degree of improvement depends on number of providers
- A mix of TS appointments with some OA or WI traffic does not greatly reduce clinic performance (utility)
Insights from the Model

- Loss of utility with WI traffic is due to the long right-tail of Poisson distribution
 - Excessive patient waiting & clinic overtime
- Loss of utility with OA traffic is due to uncertainty about number of OA call-ins
- TS appts reduce patient waiting and clinic overtime
 - Binomial distribution has truncated right tail
- Multiple providers improves clinic utility
 - Portfolio effect – variance reduction
Managerial Caveats

- Results (to date) are for “reasonable” utility parameters
 - Sensitivity analysis currently under way
- Attractiveness of WI and OA traffic may improve if they have a higher utility benefit than do scheduled appointments ($\pi_{WI} > \pi_{TS}; \pi_{OA} > \pi_{TS}$)
 - Currently under investigation
5. Contributions & Future Research
Contributions of Research

- **Analytic yield management model for health care clinics with OA traffic**
 - First to examine analytically examine combinations of TS and OA
- **Fast and effective near-optimal solutions**
- **Demonstrate the trade-offs of OA traffic**
 - Scheduled appointments provide higher utility
 - Even some appointments improve utility of an all OA clinic
Future Work

- **Determine sensitivity of results**
 - Utility parameters, number of slots, show rates, linear costs
 - Show rates, walk-in rates, and providers vary by time of day
- **Extend model**
 - Different utility parameters for appointments and walk-ins
 - Walk-ins seen before appointments and vice versa
 - Stochastic service times
Comparing Walk-In, Open Access, and Traditional Appointment Scheduling in Outpatient Health Care Clinics

Production and Operations Management Society
Orlando – May 2009

Dr. Linda R. LaGanga
Director of Quality Systems
Mental Health Center of Denver
Denver, CO USA

Prof. Stephen R. Lawrence
Leeds School of Business
University of Colorado
Boulder, CO USA

© 2008 – Linda LaGanga and Stephen Lawrence