An Appointment Overbooking Model To Improve Client Access and Provider Productivity

Dr. Linda R. LaGanga
Director of Quality Systems
Mental Health Center of Denver
Denver, CO USA

Prof. Stephen R. Lawrence*
Leeds School of Business
University of Colorado
Boulder, CO USA
* Corresponding author

New Challenges in Service Operations
POMS College of Service Operations and EurOMA Conference

© 2007 – Linda LaGanga and Stephen Lawrence
Appointment Scheduling
Appointment Waiting

"When I arrived I was cleanshaven."
Appointment Services

- Types of services
 - Medical care & mental health clinics
 - Dentists and medical specialists
 - Government offices; law offices
 - Counseling & admissions offices
 - Retail (tax help, salons, …)

We call these “appointment services”
- Where “providers” in “offices” serve “clients”
The “No-Show” Problem

- Research motivated by a outpatient mental health clinic in Denver, CO
 - 16 daily appointments / clinician
 - 30% no show rate

- Office no-show rates vary from 0-80%
 - <10% Brahimi & Worthington (1991); Warden (1995)
 - 10-30% Barron (1980)
 - 3-80% Rust et al. (1995)
Possible Solutions

- Sending clients reminder cards

- Call clients to remind them of appointments

- Providing public transport information
 - Bean & Talaga (1995)

- Overbooking has not been closely examined as a possible response
 - Widely used other businesses (e.g., airlines)
Literature

- **Blanco White & Pike (1964)**
 - Appointment systems in out-patients’ clinics and effect of patients’ unpunctuality. *Medical Care* 2(3), 133-145

- **Vissers (1979)**
 - Selecting a suitable appointment system in an outpatient setting. *Medical Care*, 17(12), 1207-1220

- **Cayirli & Veral (2003)**

- **LaGanga & Lawrence (2007a)**
 - Clinic overbooking to improve patient access and increase provider productivity. *Decision Sciences*, 38(2).

- **LaGanga & Lawrence (2007b)**
Appointment Scheduling and Overbooking Model

![Bar Chart]

Number Waiting (k)

Probability

0% 10% 20%

0 1 2 3 4 5 6 7 8 9 10 11 12
How to Handle No-Shows?

- How to balance competing goals?
 - Provide better client access
 - Minimize client waiting
 - Minimize office overtime
 - Maximize provider productivity

- How to measure a “good” policy?
 - Is this a monetary problem?
 - A service problem?
Overbooking Utility Model

- Maximize office “utility”
- Trade-off
 - Client access (number of clients seen)
 - Average client waiting times
 - Expected office overtime
- Note that provider productivity is implicit in this model
Assumptions

- Clients “show” on time with probability σ
- Client service times deterministic
 - No variability
- Clients serviced by assigned provider
- Office accrues
 - Benefits for serving additional clients
 - Penalties for keeping clients waiting
 - Penalties for office overtime
Probability that a_j Clients Arrive

- Arrivals are binomially distributed
 - s_j clients scheduled for appt slot j
 - Probability of a client showing is σ
 - $a_j \leq s_j$ clients show for appointment

$$f(a_j; s_j, \sigma) = \binom{s_j}{a_j} \sigma^a_j (1-\sigma)^{s_j-a_j} = \frac{s_j!}{a_j!(s_j-a_j)!} \sigma^a_j (1-\sigma)^{s_j-a_j}$$
Arrival Distribution Example

3 clients scheduled; 50% show rate

$N = 162, \ \sigma = 50\%, \ slot \ j = 12, (\omega, \tau) = (0.5, 1.0) \ linear$
Probability of k clients Waiting

\[\theta_{j+1,k} = \theta_{j,0} \alpha_{j+1,k} + \sum_{i=0}^{k} \theta_{j,i+1} \alpha_{j+1,k-i} \]

- $\alpha_{jk} = \text{probability of } k \text{ clients arriving for service at the start of appointment slot } j$
- $\theta_{jk} = \text{probability of } k \text{ clients waiting for service at start of appointment slot } j$
Number Waiting Example

Appointment slot 12; 3 clients scheduled

\[N = 16, \sigma = 50\%, \text{ slot } j = 12, (\omega, \tau) = (0.5, 1.0) \text{ linear} \]
Relative Benefits and Penalties

- \(\pi \) = Benefit of seeing additional client
- \(\omega \) = Penalty for client waiting
- \(\tau \) = Penalty for office overtime
- Numéraire of \(\pi \), \(\omega \), and \(\tau \) doesn’t matter
 - Ratios (relative importance) are important
- Allow both linear and quadratic costs
Linear & Quadratic Costs

- Model allows 2nd order polynomials
 - Results not reported in this paper
Linear & Quadratic Objectives

- **Linear Utility Function**

\[
\hat{U}^L(S) = \pi \hat{A} - \frac{\omega}{\hat{A}} \left(\sum_{j=1}^{N} \sum_{k} k \theta_{jk} + \sum_{k} \sum_{i=1}^{k} i \theta_{N+1,k} \right) - \tau \sum_{k} k \theta_{N+1,k}
\]

- **Quadratic Utility Function**

\[
\hat{U}^Q(S) = \pi \hat{A} - \frac{\omega}{\hat{A}} \left(\sum_{j=1}^{N} \sum_{k} (2k-1) \theta_{jk} + \sum_{k} \sum_{i=1}^{k} i^2 \theta_{N+1,k} \right) - \tau \sum_{k} k^2 \theta_{N+1,k}
\]
Solution Methodology

1. Gradient search
 - Increment/decrement appointments scheduled in each slot
 - Choose the single change which provides the greatest improvement in utility
 - Iterate until no further improvement found

2. Pairwise interchange
 - Exchange appointments scheduled in all appointment slot pairs
 - Choose the single swap which provides the greatest improvement in utility
 - Iterate until no further improvement found
3. Computational Results

![Bar Chart]

- X-axis: Appointment Slot
- Y-axis: Number of Appointments

<table>
<thead>
<tr>
<th>Appointment Slot</th>
<th>Number of Appointments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Schedules

- 180 example problems solved
- Office sizes
 - $N = \{4, 8, 12, 16, 20, 24\}$
- Show rates
 - $\sigma = \{90\%, 80\%, \ldots, 50\%\}$
- Benefit of additional client
 - $\pi = 1.0$
- Waiting / overtime costs
 - $(\omega, \tau) = (1.0, 1.0) (0.5, 1.5) (1.5, 1.5)$
- Linear and quadratic cost functions
Example Schedules (1/3)

6A. $N=4$, $\sigma = 0.8$
$(\omega, \tau) = (0.5, 1.5)$ quadratic

6B. $N=8$, $\sigma = 0.5$
$(\omega, \tau) = (1.0, 1.0)$ linear

- **Front-loading**
 - Bailey (1952)

- **Double-booking**
 - Welch & Bailey (1952)
Example Schedules (2/3)

6C. $N = 12, \sigma = 0.7$
$(\omega, \tau) = (1.0, 1.0)$ quadratic

6D. $N = 16, \sigma = 0.5$
$(\omega, \tau) = (1.0, 1.0)$ linear

- Wave schedule
 - Baum (2001)

- Front-loading + double-booking
Example Schedules (3/3)

6E. $N = 20, \sigma = 0.8$
$(\omega, \tau) = (0.5, 1.5)$ linear

6F. $N = 24, \sigma = 0.5$
$(\omega, \tau) = (0.5, 1.5)$ quadratic

- Waves with increasing period
- Front-loading + double-booking + erratic waves
Appointments Overbooked

1A. Overbooking vs. office size N

1B. Overbooking vs. show rate σ

© 2007 – Linda LaGanga and Stephen Lawrence
2A. Utility improvement vs. office size N

2B. Utility improvement vs. show rate σ
Without overbooking, provider productivity is equal to the show rate σ.

3A. Productivity vs. office size N

3B. Productivity vs. show rate σ
Expected Waiting & Overtime

4A. Expected waiting vs. office size N

4B. Expected waiting vs. show rate σ

4C. Expected overtime vs. office size N

4D. Expected overtime vs. show rate σ
Overbooking Patterns

5A. Linear costs

5B. Quadratic costs
Managerial Implications

- Overbooking (OB)
 - Improves customer service (serve more)
 - Increases provider utilization
 - Increases expected client wait times
 - Increases expected clinic overtime

- OB patterns are problem specific
 - Unlikely simple rules will satisfice
 - Need optimal or near-optimal schedules
Contributions of Research

- Demonstrate benefits of appointment overbooking
- Analytic model of appointment scheduling with overbooking
 - Maximize utility
 - Balance service, waiting, and overtime
 - Linear and quadratic cost functions
- Fast and effective heuristic solutions
- Previous literature shown to be special cases of our analytic model
Future Extensions

- Stochastic service times
- Service times vary by service type
- Show rates vary by time of day
- Appointments scheduled at any time
 - Not just at start of appointment slot
- Walk-ins
An Appointment Overbooking Model To Improve Client Access and Provider Productivity

Dr. Linda R. LaGanga
Director of Quality Systems
Mental Health Center of Denver
Denver, CO USA

Prof. Stephen R. Lawrence*
Leeds School of Business
University of Colorado
Boulder, CO USA
* Corresponding author

New Challenges in Service Operations
POMS College of Service Operations and EurOMA Conference